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Star-Products and Quasi-Quantum Groups
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The purpose of the present paper is to show that Drinfeld’s theories of
quasiquantum groups (quasitriangular quasi-Hopf algebras) and of quasi-Lie
bialgebras can be developed in terms of the star products on a simple
quasitriangular Poisson—Lie group.

1. INTRODUCTION

Quantum groups appeared first as quantum algebras, i.e., as one-parame-
ter deformations of the universal enveloping algebras of complex simple Lie
algebras, in the study of the algebraic aspects of quantum integrable systems
by Kirillov and Reshetikhin (1988, 1990), Kulich and Skilyanin (1985),
Kulich et al. (1981), and Faddeev (1982). Subsequently it was shown that
these algebras are also deeply rooted in other areas, such as exactly soluble
statistical models (Yang, 1967), factorizable S-matrix theory (Zamoldchikov
et al., 1979), conformal field theory (Alvarez-Caumé et al., 1989; Moore
and Seiberg, 1989), and the quantum Hall effect (Jellal, 1997). Mathemati-
cally, these algebras are Hopf algebras (Abe, 1980) which are
noncocommutative.

The quantum algebras related to trigonometric solutions of the quantum
Yang—Baxter equation were axiomatically introduced as quasitriangular Hopf
algebras independently by Drinfeld (1983a, 1987) and Jimbo (1985, 1986).
Other approaches to quantum groups have been developed by Faddeev et
al. (1988), Manin (1988), Woronowicz (1989), and flato and Sternheimer
(1994a,b). The last approach is based on the fact that there exists a simultitude
between the star-product (Bayen et al., 1978a,b) formulation of quantum
mechanics and functional realizations of quantum groups.
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The notion of a star-product on a Poisson manifold introduced by Flato
et al. (1975, 1976) has been extensively studied. The existence of a star-
product has been studied by Vey (1975) and Neroslavsky and Vlassov (1979),
who proved the existence of a star-product on a symplectic manifold with a
vanishing third De Rham cohomology group, and by De wilde and Lecompte
(1983) in the general case. From a geometrical point of view, Omori et
al. (1991) and Fedesov (1994) also constructed star-products for arbitrary
symplectic manifolds.

The notion of quasi-Hopf algebras was introduced by Drinfeld (1990,
1991) in connection with solutions of the Knizhnik—Zamolodchikov equa-
tions. They arise naturally in certain conformal field theories (Dijkgraaf and
Witten, 1990; Pasquier et al., 1990); the main feature is an invertible element
® obeying a certain pentagon “cocycle” condition. The quasi-Hopf algebra
is required to be associative as algebra, but coassociative only up conjugation
by this .

As in Moreno and Valero (1990, 1992, 1994), where the authors
show that Drinfeld’s theory of triangular quantum groups can be developed
in terms of the invariant star-products on a triangular Poisson lie group
(the Poisson structure is given by an r-matrix satisfying the classical
Yang—Baxter equation) and prove some theorems given by Drinfeld (1983b)
about solutions of the triangular quantum Yang-Baxter equations, and in
contrast to previous work (Mansour, 1997), where an h-deformation of
a Lie bialgebra as Lie algebra is given in terms of an invariant star-
product on the corresponding triangular Poisson lie group, here I show
that a star-product on a simple quasitriangular Poisson—Lie group (the r-
matrix is a solution of the generalized Yang—Baxter equation) leads to a
quasibialgebra structure on the corresponding Lie algebra and a quasitrian-
gular quasi-Hopf algebra (quasi-quantum group) structure on the associated
quantized enveloping algebra and that each family of equivalent star-
products generates only one quasi-quantum group and only one quasi-
Lie bialgebra.

1.1. Preliminaries

Assuming that K is a field of characteristic zero and recall the following
(Drinfeld, 1990):

Definition 1. A quasibialgebra is a set (H, A, &, ®) where H is an
associative K-algebra with unit 1, A a homomorphism H - H X H, € a
homomorphism H — K, and @ is an invertible element of H* and a 3-
cocycle such that the following equalities hold:
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(id ®¥ A)A(a) = D' (A X id)A(a) - O

(A ®id ® id)(D)- (id X id ® A)(D)
=@ X 1)-(id ®A X id)(D)- (1 ® D)

(e ®id)A = (id X e)A = id

(id X e X id)(D) = 1

Definition 2. A quasi-Hopf algebra is a set (H, A, g, ®, a, B, S) where
(H, A, &, D) is a quasibialgebra o, B € H, and S is an automorphism of H
such that

> S(hioe; = g(a)a, > biPS(c) = e(a)p
> S(X)aYPs(z) =1, > PBS(Q)oR; =1
[ J

where

A(a)ZZb,®c,, q):ZzY,(gY,@Z,, @71:ZP,®Q,®R,

Definition 3. A quasitriangular quasi-Hopf algebra is a set (H, A, €, O,
o, B, S, R) where (H, A, g, @, a, B, S) is a quasi-Hopf algebra and R is an
invertible element of H & H satisfying

A® = RAR™!
(A R id)R = O35 Ri3 D130 Rz D12}
(id ® A)R = D31 Ri3D313 R D13

Definition 4. A quasi-Lie bialgebra is a triple (g, 0, Y) where g is a Lie
algebra, O is a 1-cocycle

5 g A
ie.,
8, Y] =[x X1 +1Xx, 3] —[y®1+ 1%y 3x)]
and y € A¥(g) C g ® g & g satisfies the following equalities:
LTARBG X id)d(x) =[x X1 X1+ 1 Xx X1+ 1X1Xx 7]
Alt(d X id ® id)(y) = 0

where Alt stands for the alternation.
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2. STAR-PRODUCT AND THE QUASI-QUANTUM GROUP
STRUCTURE ON THE QUANTIZED ENVELOPING ALGEBRA

Let G be a simple Lie group, g its simple Lie algebra, and let there
exist an r € A*(g) which satisfies the generalized Yang—Baxter equation,

[r12, ri3] + [r13, r23] + [r12, 23] = —[113, B3] (2.1)

where rip = r X 1, ri3 = On3rin, 13 = 1 R r (023 is the permutation of the
second and third factors in the tensor product), and ¢ is a symmetric and ad-
invariant element of g X g, i.e.,

b1 =t [AX),1=0 for xe€g (2.2)
From the fact that t € g X g we obtain that
(A Xid) (1) = n3 + b3 (2.3)
(id ® A)(©) = t12 + 13 (2.4)
and from (2.2) we have
[ti2, t13 + 23] = 0 (2.5)
[ta3, i + 613] = 0 (2.6)

The Poisson-Lie structure on the Lie group G associated to the r-matrix,
r=rX, X X/t = =W
is given by
0. 03(9) = (K@) X)) = Xiusel§) - Xoe(V))

where X Iu (X7 is the basis of left (right) invariant vector fields corresponding
to {Xu} (basis of g) and is given by

Xigg = Xu(®@) = TLeXu,  Xie = Xi(e) = TR X,  VegG
where L, (Ry) is the left (right) translation of G, and T; L, (7. R,) is the tangent
map of L, (R,) in e (element unit of G).

The quasitriangular Lie bialgebra structure on the corresponding Lie
algebra is given by the algebra 1-cocycle

5 g—ogXg
x—d(x) = (ad, X 1 + 1 X ad,)r (2.7)

where ad stands for the adjoint representation of g on g.
We recall also that a star-product on a Poisson-Lie group G is defined
as a bilinear map
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C*(G) X C(G) > CH@)[AN

QW) >o*y= /;» Cu(@, VA" (2.8)
where
Co(@, V) = -V
Ci(e. V) = {o, ¥}
C; are bidifferential operators on C”(G) null on the constants such that
ox1=1x0p=1 (2.9)
@*U)* o =0 * (V=) (2.10)
A = W) = A@) * AW @.11)
where A is the usual coproduct on C*(G) defined by
A@)(x, y) = ¢(x-y) (2.12)
Takhtajan (1989) gives the desired star-product by the following expression:
¢ * U = u[F ' (x 2 Flx, 2) (@ X)) (2.13)

where W is the usual multiplication on the algebra C*(G) and
F=1+ % r+ 3 Fihi* € Ug)*[[h]] (2.14)
[F! (F") is the left (right) bidifferential operator corresponding to F] satisfies
the following equation:
(Ao Rid)F-(FX 1) = O-(id ® Ag)F-(1 X F) (2.15)
[Ao is the usual coproduct of the enveloping algebra U(g)], where
O = (A Xid)F-(FX1)-(1 ®F")-(id ® Ag)(F ™" (2.16)

is Adg-invariant.
In fact

(@ * W) * & = p[F'(x, ») Flx, »)TF ' (x »)Fx, )0 X )] X ¢]
= p X DIF(x+p, 2 F (x )
X F(x + 3, 2)'F(x, p)(@ X X )]
= X DIF ' ) F(x + y,2)
X (F(x + y, 2)F(x, ) (@ X ¥ X §)]
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= R X DIOT(x, 3, 2Dy, 3, 2 (F (3, 2)
X Fx y + 2)(F(x, y + 2DF(5, 2) (@ XV X §)]
= p(1 X WIQ(x, 3, 2Dy, 3, 2'(F (3, 2)
X F(x,y + 2)) (Fx, y + 2)F(y, 2)(9 XU X )]
and

@ * (U * )

RIF' (%, ) F(x, )@ X w(F ™ (x, ) F(x, )0 X 9))]
RO X WIEFE (3 F (s y + 2)

X (F(x,y + 2)F(y,2)(¢ XV X )]

Then the associativity equation (2.10) for any ¢, V, & € C*(G) implies that
O (x, 5, 2" D(x,y, 2/ =1

1e.,

RO T,L,O =1

T.RD ™ T, R(Ad, D) = 1

T,R,(D™'-Ad, D) = 1 forany g € G

which implies that
Ad,® =0

Precisely a star-product does not only define a deformation of C™(G), but
also of the quotient algebra %, (G) of C*(G) defined as the set of the C”-

functions in a neighborhood containing the identity (e¢) of G modulo the
following relation of equivalence:

o~V if X,0—Y)=0 for any X € U(g)

where

X, ) = X(0)(e)

The star-product is by definition compatible with this relation of equiva-
lence, i.e.,

if @~¢" and Y~ V', then @*VY~ @ x|’

So the deformation we talk about is a deformation of %, (G) as a bialge-
bra. This allows us to provide by the duality the deformed algebra
(D' ({e})[[A]], where D'({e}) is the algebra of distributions on G with support
at the unit element e € G), or, thanks, to the theorem of L. Schwartz, which
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states that the enveloping algebra U(g) is isomorphic to the subspace of
distributions on G with support at the unit element e € G, i.e.,

U(g) = D'({e})

we deduce that a star-product provides a deformation of the enveloping
algebra.

The quantized enveloping algebra U(g)[[/4]] is endowed with a structure
of noncommutative Hopf algebra where the multiplication algebra is the
ordinary convolution on D'({e}) and the coproduct A is given by

AnX), XUy =(X, @ # V)  for X €U(g) and ¢,V € F(G)
Explicitly
(X, @ * ) = (X, m((F~ ) (F)(@ ® )
= Qo(X), (F)(F)(@ X )
Using the fact that
XIO(9) = Xi(9) = X(@)(e)
we obtain that
(X, 0 0y = (M) (F) (F)(0 R W))(e, e)
Then we must calculate first the quantity
1= ((Ao(X)) - (F Fl(@ X W)(g. 8)
For this we use the fact that for X € D'({e}) we have
Xie(@) = X(@)(8) = G % X, ¢)
X7g(@) = X"(@)(g) = (X *. &, @)

where *. is the convolution product on D’({e}) and J, is the Dirac distribution
at g € G. So,

1= (8 R &) *. Ao(X), (F') - Fl(@ )
= <(8g ® 832) *C’ AO(X)a <F71 *C (8g ® 8&’)9 (8g ® 83{) *c’ Fa (P ® ‘JI>>

Next we use the following notation; for X € D’({e}), its dual (denoted
X™) € F;(G); then

1= (F "% (8 ®8y), (8 X 8,) *. F, @ X)) (Ao(X)) (g 2)
= ((F7)™ (@ ® W) (F)™ - (Ao(X) (g, 2)
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and if we use the following property of the convolution product
(Y *. X)~ = X"-Y~
we have
1= ((F7)7 (@ X W) - (Ao(X) * F)™)(g, &)
= (8 R 8,) *c (Ao(X) *e F), (F71)™ (¢ X))
= ((F) #c (8 ® 8) *c (Ao(X) * F), (@ X))
Then we have
X, @ *U) = u((A(X)(F Y (F)@ R ))(e, o)
= ((F71) e (8 X 80) % (Ao(X) *c F), (9 X))
= (F7" e Ao(X) % F, (9 X))
which implies that
Ap(X) = F ' 5, Ay(X) *, F (2.17)

or the convolution product is the ordinary multiplication on the enveloping
algebra U(g), so (2.17) can be rewritten as

Ap(X) = F '-Ay(X)-F (2.18)

Note that the star-product associativity (2.10) implies the coassociativity of
the deformed coproduct Ar, i.e.,

(Ar X id)A(X) = (id ® Ap)Ar(X) (2.19)
which implies that
(F'AgF X id)(F'Ao(X)F) = (id X F'AGF)(F'A(X)F)
Again,
(F7'®1)-(Ag ®id)F~ " (Ao X id)Ao(X) - (Ao R id)F-(F X 1)
=1 X F-(id ® Ag)F " (id ® Ag)Ag(X) - (id ® Ag)F-(1 X F)
SO
(Ao R id)Ao(X) = (A R id)F-(F X 1)-(1 ® F)-(id ® Ag)F "
X (id ® Ag)Ao(X)(id R Ag)F-(1 K F)-(F ' ®1)-(Ay X id)F "
Then
(Ao X id)Ag(X) = D-(id ® Ag)Ag(X)- D!

or equivalently
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(id X Ag)Ap(X) = D7+ (Ag X id)Ag(X) - D (2.20)
From (2.16) it is easily seen that @ satisfies the pentagon equation

(A X id X id)(D) - (id X id R Ag)(D)
= (@ X 1)-(d X A X id)(D)-(1 X D) (2.21)

In fact
(A X id X id)D - (id ® id X Ag)D

= (A X id ® id)((Ap X id)F-(F ® 1)-(1 ® F~")-(id ® Ag)F ")
X (id ® id ® Ag)((Ag X id)F-(F X 1)
X (1 X FN-(d ® Ag)(F 1Y)

= (A X id ® id)((Ay X id)F-(F ® 1)-(1 X F 1)) -(Ag X Ag)F ™"
X (Ao X Ag)F-(id X id X A)
X (FR1)-(1 ®F)-(3id X Ag)F )

= (Ay X id ® id)((Ag R id)F-(F X 1)-(1 ® F1)(id ® id X A)
X (FX1)-(1&®F-(id ®Ag)F ™

= ((Ao X id)A¢ X id)F- ((Ay X id)F ® 1)-(F X 1 X 1)
XAXF'RXD)-(1XFX1)-(1X1XF
X (1 X (id ® Ag)F )+ ((id X (id ® Ag)Ag)F~!

= ((Ao X id)Ag X id)F- ((Ay X id)F-(F X 1)
XAXFHR1)-(1XFX1)-(1XF
X (id ® Ag)F ) - ((id R (id ® Ag)Ag)F~!

= (Ao X id)Ag X id)F- (D - (id X Ag)F X 1)
X (1 X (id ® Ag)F - D) - (id X (id X Ag)Ag)F !

= (Ao R id)A¢ X id)F- (D X 1)« ((id X Ag)F X 1)
X (1 X (id X Ag)F~)-(1 ® D)-(id K (id ® Ag)Ag)F "

= (D X 1)-(id ® Ay X id)((Ay X id)F-(F X 1)
X (1 X F-(d X A)F1)-(1 X D)

=@ X1)-(id XA Xid)(D)- (1 ¥ D)
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The unitarity condition (2.9) implies that
(e Xid)F = (id ¥ g)F = 1 (2.22)

where ¢ is the usual counit of the enveloping algebra U(g).
In polynomial notation we have

F(x, 0) = F(0, y) = 1
From (2.22) we can show that @ satisfies the following equation:
(id X e X id)® = 1 (2.23)
In fact
(id ¥ e X id)® = (id ® & X id)((Ag X id)F
X (F&®1)-(1 ®F-(id ® Ag)F™
= (id ® £)Ag X id)F-((id X &)F X 1)
X (1 X (e ®id)F - (id ® (¢ X id)Ag)F~!
=F.F"!
=1
Using (2.21), we can show that ® also satisfies
(e ®id X id)® = 1, (id X id ® £)® = 1 (2.24)
We can show directly using polynomial notation
(e ®id X id)D(x, y, z) = D(0, y, z)
= F(3,2)-F0,9)F (72 F 0,y + 2
=F(y.2)-F (3.2
=1
(id X id e)D(x, y, 2) = F(x + », 0)-F(x, y)- F (3, 0)- F '(x, y)
= F(x, y) F'(x, )
=1

Then from (2.18), (2.20), and (2.21) we deduce that (U(g)[[/]], Ao, @) is a
quasibialgebra and from equations (2.14), (2.16), (2.1) we can show that

D, y, 2) = 1 + Do(x, y, 2)h* + -+ (2.25)
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where
Alt O, = —4[ 13, 13] (2.26)

In fact, for any element

Foop) =1+ 3 R, W € U(g)*[[h]]

its inverse is given by

Floyy) =1+ ; FE(x, p)i*

where

Fi.p) = =Fleyp + > i) Frx.y)

Then
Di(x,y,2) = Fi(x, y) + Fi(x + y,z) — Fi(x, y + z) — Fi(), 2)
=rmtrztrs—r3—r2—r3=0
and a similar calculus (using the antisymmetry of r) shows that
Dy(x,y,2) + Doz, x, ) + Doy, z,x) — Da(x, z, ¥) — Pa(p, x, 2) — Di(z, 3, x)
=4([r2, r1i3] + [r13, r23] + [r12, r23])

Finally the quasi-Lie bialgebra structure on g is given by the triplet
(g, 9, v) where

5 g—ogXg
x— 8(x) =0 (2.27)
and
v = —1/4 Alt D, = [#3, 13] (2.28)

in fact, from (2.1), (2.2) it can be seen that
xX1X1+1XxXT+1X1Xx, y]=0 (2.29)

Now using the fact the antipode Sy of the enveloping algebra U(g) is an
antiautomorphism of U(g) satisfying

m(So X id)Ao(X) = m(id X So)Ao(X) = (X)1 (2.30)
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and that F(F™') € U(g)xz[[h]] can be split as
F:;ak(x)bk (F71 :;Ck(x)dk) (2.31)
and putting u = Zi cxSo(dy) as an invertible element of U(g), then we can

show that the antipode of the quantized enveloping algebra (U(g)[[/]], An,
€) is given by

SHX) = uSo(X)u™" (2.32)
In fact, if we denote by v = X So(ax)by, then applying the k-linear application
Yo Ue)l[h]] ¥ Ug)[[h]] X Ug)[[4]] — U()I[A]]
(X1 X X2 X X3) — So(X1) - X2+ So(X3)
to the equalities
A XRiDF 'O =FXR1)-(1XRF)-(id ®A))(F")
(Ao R id)Ag(X)D = D(id X Ag)Ag(X)

we obtain that

yu=a (2.33)

aX = Xo (2.34)

for any X € U(g)[[1]], where oo = Y(D) = X; So( X)) - Y; - So(Z;) for ® given by
@ZZX,—@Y,—@Z,— (2.35)

Similarly applying the k-linear application
Y Uikl ® Ug)[[h]] X U)[[4]] — Ug)[[A]]
(X1 X X, X X3) = X1-So(Xa) - Xa
to the equalities
(d X ANF ) O'=1XRF)-(F'®1)- (A Xid)F!
O (Ay X id)Ao(X) = (id ® Ag)Ag(X)- D!
we obtain that
uv = (2.36)
BXxX = XxB (2.37)

for any X € U(g)[[/]], where B = ¥'(®™") = X, Pi-So(Q) - R, for O~
given by
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@71 = Z P,®Q,®R, (238)

It is easily seen that oo and P are invertible element in U(g)[[/]], and
using equations (2.33), (2.34), (2.36), (2.37), we remark that o. and B are
central elements in U(g)[[/]], and

-1 —

a=B u'=a

y = yo"!

It remains to show that Sr defines an antipode on U(g)[[#]], i.e.,
m(Sr X id)AR(X) = m(id X SpAF(X) = e(X)1 (2.39)

where m is the usual multiplication on the enveloping algebra.
In fact

m(Sr X id)AR(X) = muSou~" X id)(F~"-Ao(X)-F)
= 2 uSo(a)So(Xi)So(co)u™'d; Xib;

L]

o Zk uSo(a)So(XH)So(c;)vd; Xib;
L],
with Ao(X) = Zx Xt X X7.
Owing the fact that
> So(ej)vd; = m(So X id)(F-F~') = 1
J

and

; So(Xi) - Xt = e(X)1

we have

m(Sr X id)AHX) = o' 3 uSo(a)bie(X)

= o uve(X)
= g(XMN1 (2.40)
Similarly, we can prove that
m(id X SHARX) = g(X)1 (2.41)
Finally, from the equalities

Z So(Xy) - YiSo(Z) = a = Z Pi-So(0i) - Ri

; So(XD) - Xt = e(X)1 = ; Xi-So(X7)
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we deduce that the quasi-Hopf algebra structure on the quasibialgebra
(U(g)[[1]], Ao, &, D) is given by (a0 = B = 1, Sp).

Drinfeld (1987) showed that the quasitriangular structure on the quan-
tized enveloping algebra (U(g)[[/]], Ar, €, Sr) is given by the R-matrix,

Rr = Fy'e"F (2.42)

which satisfies
(Ar X id)Rr = (Rr)13(Rr)2s (2.43a)
(id ® Ap)Rr = (Rp)13(Rp)12 (2.43b)

and the quantum Yang—Baxter equation
(RF)12(RF)13(RF)23 = (Rr)23(RP)13(RP)12 (2.44)

where ¢ is the symmetric element (2.2).
Then from equation (2.43a) rewritten in polynomial notation as

(Ar ® id)Re(x, ) = Rp(x, )R, 2)
we obtain
(F7 Ao F X id)(F (3, x)e "™ F(x, )
= Fl(z, )" E(x, 2)F~ (2, y)e"P DRy, 2)F(x, y)
Then
F ' (z, x + p) (A X id)e"™P D E(x + y, 2)F(x, y)
= Fﬁl(z, x)e(h’/z)(x":)F(x, Z)Ffl(z, y)e(h’/z)(y":)F(y, z)
which implies that
(Ao R id)e"™@) = F(z, x + p)F(x, »)F~\(z, x)e"P™ I F(x, z)
X F Yz, )™y ) F  (x, y)F '(x + 3, 2)
Finally, we obtain
(Ao X id)e "™ = F(z, x + p)F(x, »)F~'(z, x)
X F 'z + x, p)e"SIF(x + z, y)F(x, z)
X F7 'z, ))F'(z + p, x)e""P0
X F(y + z, x)F(y, z)Fﬁl(x, y)Ffl(x +y2) (245
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and using (2.16), we obtain
(Ap X id)e"PEN) = O71(zZ, x, y)e"PEID(x, z, y)eMPIADT(x, y, 2)
(2.46)
Similarly from (2.43b) we show that
(id ® Ag)e"™) = Py, z, x)e"PADDT(y, x, 2)eMPEID(x, y, z)

(2.47)
Note that also
AP = o(F H)Ayo(F)
= o(F He'"Ave "o (F)
= o(F )" FArF e "Po(F)
= RrApRy! (2.48)

In order to show that R = ¢""* satisfies the quasi-quantum Yang—Baxter

equation, let us note that by hypothesis we have
F(x + y, 9)F(x, y) = O(x, , 2)F(x, p + 2)- F(3, 2)

We first remark that a similar relation holds for any permutation of (x, y, z).
Clearly we have

"M (x 4y, ) F(y, X)Rr(x, 3)
= D(x, y, 2)e" "POUIE(x, y + 2)- F(z, ¥)Re(, 2)
and from the above remark
e MPEND(y, x, 2)e” MRy, x + 2)F(z, X)Re(x, 2)Rr(x, »)
= D(x, y, 2)e” PO (x, z, y)e  MPEIR(x + 2, y)
X F(z, x)Rr(x, z2)Rr(y, z)
Again
e HREND(y, x, 2)e” MDD () x, 2)F(y + z, X)F(p, 2)Rr(x, X)Rr(x, y)
= D(x, y, 2)e” "POID ™ (x, z, y)e "PEAD(z, x, y)F(z, x + ¥)
X F(x, y)Rr(x, z)Rr(y, z)
and in the same way
e HEDD(y, x, 2)e HDEAGT(y, x, 2)e MPIOAR(Z 4y, x)

X F(Za y)RF(ya Z)RR(xa Z)RF(xa y)
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= D(x, y, 2)e”"PUID (x, z, p)e” "PEAD(z, x, pe POVE(Z, x + y)
X F(y, X)Rr(x, y)Rr(x, 2)Rr(y, 2)

Then

e*(ht/Z)(x,y)Q)(y’ X, Z)e*(ht/t)(x,:)@*l(y’ X, Z)e*(ht/Z)(y,:)Q)(Z’ » x)
X F(z, x + »)F(p, )Re(y, 2)Re(x, Z)Rr(x, )
— q)(x’ ¥, Z)e*(ht/Z)(y,:)q)*l(x’ z, y)e*(ht/Z)(x,:)q)(Z’ X, y)e*(ht/Z)(x,y)

X F(Z= x + y)F(ya X)RF(X, J’)RF(X, Z)RF(ya Z)
By using (2.44), we obtain that

e*(hl/z)(.\‘,y)@(y’ X, Z)e*(hl/z)(.\‘,:)@*l(y’ X, Z)e*(hl/z)(y,:)@(z’ » x)

= Q)(x’ » Z)e*(hl/Z)()hl)Q)*l(x’ z, y)e*(hl/Z)(»\‘ql)Q)(Z’ X, y)e*(hl/Z)(»\‘qy)
which can be rewritten in compact form as
D123 R Db Ri3' D13 R = R Da3 Ri3' D31 R Doy
which implies that R satisfies the quasi-quantum Yang—Baxter equation
Ri2®315 Ri3 D132 Rz D1y = D23 RysDai3 Rz D31k R (2.49)

Then we deduce from (2.46), (2.47), (2.49) that R = ¢""* defines a quasitrian-
gular quasi-Hopf algebra on (U(g)[[#]], Ao, &, D).

Remarks. (i) If we change the group multiplication into the opposite
one, then the corresponding quasi-Hopf algebra is given by (U(g)[[/]], Ao,
g, @', o', B', St), where U(g)[[4]] is the quantized enveloping algebra with
the opposite multiplication, ®' = ®~' 5§ = S;', o' = S5'(1) =1, B’ =
Sol(1) = 1.

(i) If the star-product is defined as the deformation of the opposite
multiplication algebra of the C”-function algebra on G, then the resulting
quasi-Hopf algebra is (U(g)[[A]], A", &, @', o', B’, Sb), where A is the
opposite comultiplication, @' = @3}, S = Sp', o' = S5'(1) =1, B’ =
Sol(1) = 1.

So, using the fact that the multiplication algebra of the C”-function
algebra is commutative and that the coproduct A, satisfies Ag = AP, then
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the two quasibialgebra (U(g)[[1]], AF, &, @) and (U(g)[[1]], A, &, D3h)
must be the same, which implies that @3} = ®.

Let us suppose now that we have two star-products F and F' which
generate two quasitriangular quasi-Hopf algebras (U(g)[[/]], Ao, €, So, O,
") and (U(g)[[1]], Ao, € So, D', "), where

D(x, y,z) = F(x + y, 2)F(x, y)Ffl(y, Z)Ffl(x, y+ 2 (2.50)
Q'(x,3,2) = F'(x + 3 2F (x, )(F) (0 2)(F) (x, y +2) (2.51)

If the star-products F' and F' are equivalent, i.e., there exists an element
E(x) € u(g)[[/]] such that

F'(x,y) = E (x + p)F(x, ») E(X)E() (2.52)
then
D'(x,y,2) = Eil(x +y+ 2)F(x + y, 2)E(x + y)E(Z)Eil(x +y)

X F(x, ))EQ)E()E ' QE ' (0F (3, 2E(y + 2)
XENy+2E'WF '(x,y + 2Ex + y + 2)

=E x4y + 2)F(x + y, 2)F(x, )F'(y, 2)
XF ' x,y+2Ex+y+2)

=E'x+y+2Dx,y 2Ex+y + 2)

= D(x, y, 2) (2.53)

Then the two equivalent star-products generate only one quasitriangular quasi-
Hopf algebra and obviously one quasi-Lie bialgebra.

If the star-products F and F’ are not equivalent, then they generate two
different quasi-Hopf algebras (U(g)[[/]], A, &, @) and (U(g)[[4]], A, &, D),
which are isomorphic thanks to the following theorem.

Theorem (Drinfeld, 1990). Assume we have 4 = (U(g)[[4]], A, &, O,
"y and A' = (U(g)[[h]], A, & @', ¢""), which are quantum enveloping
algebras for the same finite-dimensional semisimple Lie algebra g; then there
exists a gauge transformation F in the algebra (U(g)[[/#]] ® U(g))[[/#]] with
Fyy = Fand F =1 & 1 mod A, and [F, A(x)] = 0 for all x € 4, such that
A = AF.
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